Современные возможности негормональной активации функции яичников при низком овариальном резерве

Дубинская Е.Д., Гаспаров А.С., Крылова Н.М., Дмитриева Н.В., Алешкина Е.В., Рязанова И.А.

ФГАОУ ВО «Российский университет дружбы народов» Министерства образования и науки Российской Федерации, Москва, Россия
В структуре бесплодного брака существенное место занимают пациентки с низким овариальным резервом. Овариальный резерв – клинический феномен, обусловленный возрастом, генетикой, аутоиммунными механизмами и факторами окружающей среды. Этот термин используется для описания репродуктивного потенциала и прогнозирования ответа при контролируемой стимуляции овуляции в программах вспомогательных репродуктивных технологий. Распространенность низкого овариального резерва, по разным данным, варьирует от 5,6 до 35,1%. До настоящего времени до конца не известны причины и факторы риска его снижения, за исключением ятрогенных факторов, связанных с хирургическим вмешательством. С клинической точки зрения в группу с низким овариальным резервом включены: пациентки с «бедным» овариальным ответом, с преждевременной недостаточностью яичников и женщины в позднем репродуктивном возрасте. Текущие стратегии контролируемой стимуляции яичников фокусируют свое воздействие на растущих фолликулах; при этом дремлющие примордиальные фолликулы не могут быть активированы известными на сегодняшний день протоколами стимуляции. Наиболее успешным у пациенток с «бедным ответом» или яичниковой недостаточностью является достижение беременности с использованием донорских ооцитов, но значительное большинство женщин отрицательно относятся к проведению данных программ и ищут альтернативные решения. В литературном обзоре представлены современные данные о возможностях, особенностях и побочных эффектах технологий негормональной активации функции яичников при низком овариальном резерве: интраовариальной аутоплазмотерапии (PRP-терапии), инъекций стволовых клеток и хирургической активации яичников.
Заключение: Гетерогенность дизайнов исследований и анализа данных пока не позволяет оценить эффективность рассматриваемых технологий. Ни для одной из них пока неизвестны точные механизмы воздействия. Однако, на наш взгляд, наиболее безопасной и результативной является интраовариальная PRP-терапия. При этом особенности технологии и ее эффективность в различных когортах пациенток требуют дальнейшего тщательного изучения.

Ключевые слова

бесплодие
низкий овариальный резерв
преждевременная недостаточность яичников
«бедный ответ»
поздний репродуктивный возраст
негормональная стимуляция функции яичников
PRP-терапия

Список литературы

  1. Aghajanova L., Hoffman J., Mok-Lin E., Herndon C.N. Obstetrics and Gynecology Residency and Fertility Needs. Reprod. Sci. 2017; 24(3): 428-34. https://dx.doi.org/10.1177/1933719116657193.
  2. Гаспаров А.С., Дубинская Е.Д., Титов Д.С., Лаптева Н.В. Клиническое значение овариального резерва в реализации репродуктивной функции. Акушерство и гинекология. 2014; 4: 11-6.
  3. Подзолкова Н.М., Шамугия Н.Л., Борисова М.С., Аншина М.Б. Сравнение эффективности различных протоколов овариальной стимуляции у пациенток со сниженным овариальным резервом. Проблемы репродукции. 2019; 25(3): 91-8.
  4. Tal R., Seifer D.B. Ovarian reserve testing: a user's guide. Am. J. Obstet. Gynecol. 2017; 217(2): 129-40. https://dx.doi.org/10.1016/j.ajog.2017.02.027.
  5. Fan Y., Chang Y., Wei L., Chen J., Li J., Goldsmith S. et al. Apoptosis of mural granulosa cells is increased in women with diminished ovarian reserve. J. Assist. Reprod. Genet. 2019; 36(6): 1225-35. https://dx.doi.org/10.1007/s10815-019-01446-5.
  6. Дубинская Е.Д., Гаспаров А.С., Колесникова С.Н., Холбан И.В., Бабичева И.А. Эпигенетика в клинической гинекологии. Вопросы гинекологии, акушерства и перинатологии. 2021; 20(2): 110-6.
  7. Wang J., Liu W., Yu D., Yang Z., Li S., Sun X. Research progress on the treatment of premature ovarian failure using mesenchymal stem cells: a literature review. Front. Cell. Dev. Biol. 2021; 9: 749822. https://dx.doi.org/10.3389/fcell.2021.749822.
  8. Cozzolino M., Marin D., Sisti G. New frontiers in IVF: mtDNA and autologous germline mitochondrial energy transfer. Reprod. Biol. Endocrinol. 2019; 17(1): 55. https://dx.doi.org/10.1186/s12958-019-0501-z.
  9. Blumenfeld Z. What is the best regimen for ovarian stimulation of poor responders in ART/IVF? Front. Endocrinol. (Lausanne). 2020; 11: 192. https://dx.doi.org/10.3389/fendo.2020.00192.
  10. Fàbregues F., Ferreri J., Méndez M., Calafell J.M., Otero J., Farré R. In Vitro follicular activation and stem cell therapy as a novel treatment strategies in diminished ovarian reserve and primary ovarian insufficiency. Front. Endocrinol. (Lausanne). 2021; 11: 617704. https://dx.doi.org/10.3389/fendo.2020.617704.
  11. Herraiz S., Buigues A., Díaz-García C., Romeu M., Martínez S., Gómez-Seguí I., Simón C. et al. Fertility rescue and ovarian follicle growth promotion by bone marrow stem cell infusion. Ferti.l Steril. 2018; 109(5): 908-18.e2. https://dx.doi.org/10.1016/j.fertnstert.2018.01.004.
  12. Jaseem M., Alungal S., Dhiyaneswaran, Shamsudeen J. Effectiveness of autologous PRP therapy in chronic nonhealing ulcer: A 2-year retrospective descriptive study. J. Family Med. Prim. Care. 2020; 9(6): 2818-22. https://dx.doi.org/10.4103/jfmpc.jfmpc_177_20.
  13. Sánchez M., Beitia M., Pompei O., Jorquera C., Sánchez P., Knörr J. et al. Isolation, activation, and mechanism of action of platelet-rich plasma and its applications for joint repair. Submitted: September 9th 2019. Reviewed: November 18th 2019. Published: December 17th 2019. https://dx.doi.org/10.5772/intechopen.90543.
  14. Machlus K.R., Italiano J.E. Jr. The incredible journey: From megakaryocyte development to platelet formation. J. Cell Biol. 2013; 201(6): 785-96. https://dx.doi.org/10.1083/jcb.201304054.
  15. Gremmel T., Frelinger A.L., Michelson A.D. Platelet physiology. Semin. Thromb. Hemost. 2016; 42(3): 191-204. https://dx.doi.org/10.1055/s-0035-1564835.
  16. Kim D.H., Je Y.J., Kim C.D., Lee Y.H., Seo Y.J., Lee J.H., Lee Y. Can platelet-rich plasma be used for skin rejuvenation? Evaluation of effects of platelet-rich plasma on human dermal fibroblast. Ann. Dermatol. 2011; 23(4): 424-31. https://dx.doi.org/10.5021/ad.2011.23.4.424.
  17. Padilla S., Sánchez M., Orive G., Anitua E. Human-based biological and biomimetic autologous therapies for musculoskeletal tissue regeneration. Trends Biotechnol. 2017; 35(3): 192-202. https://dx.doi.org/10.1016/j.tibtech.2016.09.008.
  18. Collins T., Alexander D., Barkatali B. Platelet-rich plasma: a narrative review. EFORT Open Rev. 2021; 6(4): 225-35. https://dx.doi.org/10.1302/2058-5241.6.200017.
  19. Kikuchi N., Yoshioka T., Taniguchi Y., Sugaya H., Arai N., Kanamori A., Yamazaki M. Optimization of leukocyte-poor platelet-rich plasma preparation: a validation study of leukocyte-poor platelet-rich plasma obtained using different preparer, storage, and activation methods. J. Exp. Orthop. 2019; 6(1): 24. https://dx.doi.org/10.1186/s40634-019-0190-8.
  20. Anitua E., Nurden P., Prado R., Nurden A.T., Padilla S. Autologous fibrin scaffolds: When platelet- and plasma-derived biomolecules meet fibrin. Biomaterials. 2019; 192: 440-60. https://dx.doi.org/10.1016/j.biomaterials.2018.11.029.
  21. Bakacak M., Bostanci M.S., İnanc F., Yaylali A., Serin S., Attar R. et al. Protective effect of platelet rich plasma on experimental ischemia/reperfusion injury in rat ovary. Gynecol. Obstet. Invest. 2016; 81(3): 225-31. https://dx.doi.org/10.1159/000440617.
  22. Quintana R., Kopcow L., Sueldo C., Marconi G., Rueda N.G., Barañao R.I. Direct injection of vascular endothelial growth factor into the ovary of mice promotes follicular development. Fertil. Steril. 2004; 82(Suppl. 3): 1101-5. https://dx.doi.org/10.1016/j.fertnstert.2004.03.036.
  23. Panda S.R., Sachan S., Hota S. A systematic review evaluating the efficacy of intra-ovarian infusion of autologous platelet-rich plasma in patients with poor ovarian reserve or ovarian insufficiency. Cureus. 2020; 12(12): e12037. https://dx.doi.org/10.7759/cureus.12037.
  24. Дубинская Е.Д., Гаспаров А.С., Дмитриева Н.В., Крылова Н.М. Интраовариальная аутоплазмотерапия у пациенток с низким овариальным резервом. Вопросы гинекологии, акушерства и перинатологии. 2021; 20(6): 72-80.
  25. Sfakianoudis K., Rapani A., Grigoriadis S., Retsina D., Maziotis E., Tsioulou P. et al. Novel approaches in addressing ovarian insufficiency in 2019: Are We There Yet? Cell Transplant. 2020; 29: 963689720926154. https://dx.doi.org/10.1177/0963689720926154.
  26. Cervelló I., Gil-Sanchis C., Santamaría X., Cabanillas S., Díaz A., Faus A. et al. Human CD133(+) bone marrow-derived stem cells promote endometrial proliferation in a murine model of Asherman syndrome. Fertil. Steril. 2015; 104(6): 1552-60.e1-3. https://dx.doi.org/10.1016/j.fertnstert.2015.08.032.
  27. Herraiz S., Romeu M., Buigues A., Martínez S., Díaz-García C., Gómez-Seguí I. et al. Autologous stem cell ovarian transplantation to increase reproductive potential in patients who are poor responders. Fertil. Steril. 2018; 110(3):496-505.e1. https://dx.doi.org/10.1016/j.fertnstert.2018.04.025.
  28. Mirzaei H., Sahebkar A., Sichani L.S., Moridikia A., Nazari S., Sadri Nahand J. et al. Therapeutic application of multipotent stem cells. J. Cell. Physiol. 2018; 233(4): 2815-23. https://dx.doi.org/10.1002/jcp.25990.
  29. Murphy M.B., Moncivais K., Caplan A.I. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp. Mol. Med. 2013; 45(11): e54. https://dx.doi.org/10.1038/emm.2013.94.
  30. Liu J., Zhang H., Zhang Y., Li N., Wen Y., Cao F. et al. Homing and restorative effects of bone marrow-derived mesenchymal stem cells on cisplatin injured ovaries in rats. Mol. Cells. 2014; 37(12): 865-72. https://dx.doi.org/10.14348/molcells.2014.0145.
  31. Sanders J.E., Hawley J., Levy W., Gooley T., Buckner C.D., Deeg H.J. et al. Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total-body irradiation and bone marrow transplantation. Blood. 1996; 87(7): 3045-52.
  32. He Y., Chen D., Yang L., Hou Q., Ma H., Xu X. The therapeutic potential of bone marrow mesenchymal stem cells in premature ovarian failure. Stem Cell Res. Ther. 2018; 9(1): 263. https://dx.doi.org/10.1186/s13287-018-1008-9.
  33. Sfakianoudis K., Simopoulou M., Nitsos N., Rapani A., Pappas A., Pantou A. et al. Autologous platelet-rich plasma treatment enables pregnancy for a woman in premature menopause. J. Clin. Med. 2018; 8(1): 1. https://dx.doi.org/10.3390/jcm8010001.
  34. Yoon S.Y. Mesenchymal stem cells for restoration of ovarian function. Clin. Exp. Reprod. Med. 2019; 46(1): 1-7. https://dx.doi.org/10.5653/cerm.2019.46.1.1.
  35. Lee H.N., Chang E.M. Primordial follicle activation as new treatment for primary ovarian insufficiency. Clin. Exp. Reprod. Med. 2019; 46(2): 43-9. https://dx.doi.org/10.5653/cerm.2019.46.2.43.
  36. Hsueh A.J., Kawamura K., Cheng Y., Fauser B.C. Intraovarian control of early folliculogenesis. Endocr. Rev. 2015; 36(1):1-24. https://dx.doi.org/10.1210/er.2014-1020.
  37. Dolmans M.M., Cordier F., Amorim C.A., Donnez J., Vander Linden C. In vitro activation prior to transplantation of human ovarian tissue: Is it truly effective? Front. Endocrinol. (Lausanne). 2019; 10: 520. https://dx.doi.org/10.3389/fendo.2019.00520.
  38. Hsueh A.J.W., Kawamura K. Hippo signaling disruption and ovarian follicle activation in infertile patients. Fertil. Steril. 2020; 114(3): 458-64. https://dx.doi.org/10.1016/j.fertnstert.2020.07.031.
  39. Ingber D.E. Tensegrity: the architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 1997; 59: 575-99. https://dx.doi.org/10.1146/annurev.physiol.59.1.575.
  40. Hergovich A. Mammalian Hippo signalling: a kinase network regulated by protein-protein interactions. Biochem. Soc. Trans. 2012; 40(1): 124-8. https://dx.doi.org/10.1042/BST20110619.
  41. Lunding S.A., Pors S.E., Kristensen S.G., Landersoe S.K., Jeppesen J.V., Flachs E.M. et al. Biopsying, fragmentation and autotransplantation of fresh ovarian cortical tissue in infertile women with diminished ovarian reserve. Hum. Reprod. 2019; 34(10): 1924-36. https://dx.doi.org/10.1093/humrep/dez152.
  42. Kawamura K., Kawamura N., Hsueh A.J. Activation of dormant follicles: a new treatment for premature ovarian failure? Curr. Opin. Obstet. Gynecol. 2016; 28(3): 217-22. https://dx.doi.org/10.1097/GCO.0000000000000268.
  43. Griesinger G., Fauser B.C.J.M. Drug-free in-vitro activation of ovarian cortex; can it really activate the 'ovarian gold reserve'? Reprod. Biomed. Online. 2020; 40(2):187-9. https://dx.doi.org/10.1016/j.rbmo.2020.01.012.
  44. Адамян Л.В., Дементьева В.О., Асатурова А.В. Новое в репродуктивной хирургии: одноэтапный хирургический метод активации функции яичников. Акушерство и гинекология. 2019; 3: 147-51.
  45. Kawamura K., Ishizuka B., Hsueh A.J.W. Drug-free in-vitro activation of follicles for infertility treatment in poor ovarian response patients with decreased ovarian reserve. Reprod. Biomed. Online. 2020; 40(2): 245-53. https://dx.doi.org/10.1016/j.rbmo.2019.09.007.
  46. Ferreri J., Fàbregues F., Calafell J.M., Solernou R., Borrás A., Saco A. et al. Drug-free in-vitro activation of follicles and fresh tissue autotransplantation as a therapeutic option in patients with primary ovarian insufficiency. Reprod. Biomed. Online. 2020; 40(2): 254-60. https://dx.doi.org/10.1016/j.rbmo.2019.11.009.
  47. Luongo F., Colonna F., Calapà F., Vitale S., Fiori M.E., De Maria R. PTEN tumor-suppressor: the dam of stemness in cancer. Cancers (Basel). 2019; 11(8): 1076. https://dx.doi.org/10.3390/cancers11081076.
  48. Dvorská D., Braný D., Nagy B., Grendár M., Poka R., Soltész B. et al. Aberrant methylation status of tumour suppressor genes in ovarian cancer tissue and paired plasma samples. Int. J. Mol. Sci. 2019; 20(17): 4119. https://dx.doi.org/10.3390/ijms20174119.

Поступила 21.01.2022

Принята в печать 25.01.2022

Об авторах / Для корреспонденции

Дубинская Екатерина Дмитриевна, д.м.н., профессор кафедры акушерства и гинекологии с курсом перинатологии, РУДН, +7(903)117-55-58,
eka-dubinskaya@yandex.ru, https://orcid.org/0000-0002-8311-0381, 117198, Россия, Москва, ул. Миклухо-Маклая, д. 8.
Гаспаров Александр Сергеевич, д.м.н., профессор кафедры акушерства, гинекологии и репродуктивной медицины, факультет непрерывного медицинского образования, РУДН, +7(499)450-35-87, 5454444@mail.ru, https://orcid.org/0000-0001-6301-1880, 117198, Россия, Москва, ул. Миклухо-Маклая, д. 8.
Крылова Надежда Михайловна, ассистент кафедры акушерства, гинекологии и репродуктивной медицины, факультет непрерывного медицинского образования, РУДН, +7(915)421-29-40, Leonad2009@yandex.ru, 117198, Россия, Москва, ул. Миклухо-Маклая, д. 8.
Дмитриева Наталья Викторовна, к.м.н., репродуктолог клиники «Я здорова», научный сотрудник клинической базы кафедры акушерства, гинекологии и репродуктивной медицины, РУДН, +7(903)748-96-26, dmitrieva-doc@yandex.ru, 117198, Россия, Москва, ул. Миклухо-Маклая, д. 8.
Алешкина Елизавета Владимировна, ассистент кафедры акушерства, гинекологии и репродуктивной медицины, факультет непрерывного медицинского образования, РУДН, +7(926)768-44-27, alyoshkina.ev@yandex.ru, 117198, Россия, Москва, ул. Миклухо-Маклая, д. 8.
Рязанова Ирина Александровна, ассистент кафедры акушерства, гинекологии и репродуктивной медицины, факультет непрерывного медицинского образования, РУДН, +7(926)417-05-22, irina.ryazanova.doc@yandex.ru, 117198, Россия, Москва, ул. Миклухо-Маклая, д. 8.

Вклад авторов: Дубинская Е.Д., Гаспаров А.С. – разработка концепции и дизайна исследования, анализ полученных результатов, редактирование; Крылова Н.М., Дмитриева Н.В., Алешкина Е.В, Рязанова И.А. – сбор данных, написание текста статьи.
Конфликт интересов: Авторы заявляют об отсутствии конфликтов интересов.
Финансирование: Финансирование данной работы не проводилось.
Для цитирования: Дубинская Е.Д., Гаспаров А.С., Крылова Н.М., Дмитриева Н.В., Алешкина Е.В., Рязанова И.А. Современные возможности негормональной активации функции яичников при низком овариальном резерве.
Акушерство и гинекология. 2022; 2: 37-44
https://dx.doi.org/10.18565/aig.2022.2.37-44

Также по теме

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.